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Active space coupled cluster methods exhibit unusual, nonsmooth spin symmetry-breaking behavior where
the unrestricted minimum lies higher in energy at short bond distances and crosses below the restricted solution
at longer distances. The restricted solution is also observed to be a stable minimum slightly beyond the
symmetry-breaking point. This behavior arises due to differences in the optimal active spaces defining the
restricted and unrestricted wave functions and results in unrestricted wave functions that are not strictly size
consistent. We suggest a new, size-consistent model that allows the orbitals to break spin symmetry only
within the active space.

Introduction

In writing down the equations for unrestricted Hartree-Fock
(UHF) theory in 1954, Pople and Nesbet recognized that, “There
is no a priori reason, however, why any of the orbitals in one
[spin] set should be identical with any in the other.”1 In the
limit of the exact wave function, full configuration interaction
(FCI), there is no advantage to any particular representation of
the alpha and beta spatial orbitalssall give the same FCI energy.
Approximate wave functions, on the other hand, can sometimes
benefit variationally from breaking spin or spatial symmetry.
In the former, the alpha and beta spatial orbitals differ, whereas
in the latter, the molecular orbitals no longer transform according
to the point-group symmetry of the molecule. In this article,
we only consider spin symmetry breaking (SB).

Symmetry breaking in quantum chemistry is a tradeoffsthe
variationally lower energy of the symmetry-broken solution is
often desirable, but the solution often lacks desirable properties
inherent to the exact wave function. For example, unlike their
restricted counterparts, unrestricted wave functions are not
eigenfunctions of the spin operatorŜ2. The rapid changes in
the wave function for small geometric shifts near the SB point
leads to deformed potential energy surfaces and spurious
property predictions, such as the infamous cases where pertur-
bation-theory-predicted harmonic vibrational frequencies are
hundreds or even thousands of wavenumbers in error.2-4

Furthermore, Møller-Plesset perturbation series based on highly
spin-contaminated UHF solutions exhibit extremely poor con-
vergence with respect to higher-order terms in the perturbative
expansion.5-7 On the other hand, restricted wave functions
typically overbind species significantly, and are not size-
consistent. Deciding whether to grant the wave function the
flexibility to break symmetry depends in large part on the
problem at hand and the researcher’s goals.

Spin SB becomes variationally advantageous when the
approximate wave function lacks the flexibility to properly

describe the system. For example, restricted Hartree-Fock
(RHF) theory cannot properly describe homolytic bond dis-
sociation to give an electron localized on each fragment.8

Instead, in the RHF long-bond-length limit, both electrons share
a spatial orbital spread over both fragments. Spin symmetry
breaking allows the alpha bonding orbital to localize to one
fragment and the beta bonding orbital to localize to the other,
leading to the qualitatively correct dissociation limit (at the
expense of the wave function no longer being an eigenfunction
of Ŝ2). Because of their often better energetics, unrestricted
methods are routinely used for treating open-shell systems, bond
dissociation, transition states, diradicals, and other systems with
highly correlated electronic structure.

To understand the orbital behavior near the SB point, consider
the wave function near equilibrium along a bond-breaking
coordinate on the potential energy surface (PES). In this region,
the RHF (or related method) solution is a minimum with respect
to orbital rotations along the spin symmetry-breaking coordinate,
as shown schematically in Figure 1, curve a. However, at some* Corresponding author. E-mail: gberan@mit.edu.

Figure 1. Schematic of a typical orbital rotation energy surface with
respect to breaking spin symmetry in the orbitals (a) before the SB
point, (b) at the SB point, and (c) after the SB point.
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point during the stretch, the second derivative of the energy
with respect to SB orbital rotations becomes zero (curve b),
allowing the wave function to change significantly with no
change in the energy. Beyond the SB point (curve c), the
unrestricted solution becomes variationally preferred, and the
restricted solution lies at a saddle point between two equivalent
unrestricted solutions in the orbital rotation space.

Given the limitations of HF in providing a qualitatively
correct reference determinant for highly correlated systems such
as radicals, diradicals, and transition states, research efforts have
focused on simplified correlated wave functions that include a
description of the static correlation effects that are so important
in these systems. Perhaps the most ubiquitous of these ap-
proaches is the so-called complete active space self-consistent
field (CASSCF) wave function,9 in which the FCI problem is
solved within a small subset of active orbitals, the number of
which typically corresponds to the chemically interesting
orbitals. The partitioning between active and inactive orbitals
is determined variationally. Because they provide the exact
solution within the active space, CASSCF wave functions are
invariant to mixing between active occupied and active virtual
orbitals. Instead, the energy depends only on the partitioning
between three subspaces: inactive occupied orbitals, active
orbitals (both occupied and virtual), and inactive virtual orbitals.
Unfortunately, the factorial scaling of CASSCF with respect to
the size of the active space size limits its applicability to systems
with up to about 14 active orbitals and electrons.

Active space coupled cluster methods, such as valence orbital-
optimized coupled cluster doubles (VOD),10 and an unrestricted
coupled cluster formulation of perfect pairing (PP)11-15 have
been developed as less expensive approximations to CASSCF
for the treatment of systems exhibiting strong static correlation
effects. Instead of solving the FCI problem, VOD solves the
coupled cluster doubles (CCD)16 equations in an active subset
of the orbitals. As in CASSCF, the actual orbitals are obtained
by variationally minimizing the active space CCD energy with
respect to orbital rotations. In contrast to HF, for which the
energy depends solely on the partitioning between the occupied
and virtual subspaces, or CASSCF, for which the dependence
is described above, the VOD energy depends on the partitioning
between four subspaces: the uncorrelated core occupied, the
active occupied, the active virtual, and the uncorrelated inactive
virtual orbital subspaces.

PP can be viewed as a strongly local approximation to VOD
that pairs the active electrons and allows only one correlating
orbital per electron pair.17,18 The simplicity and computational
affordability of PP makes it a promising candidate to replace
HF in many classes of systems for which static correlation is
important.14,18The local approximation inherent in PP destroys
the invariance between active occupied or active virtual orbitals
found in VOD. Instead, PP is generally only invariant toward
mixing between inactive occupied or inactive virtual orbitals
(a more complete discussion of the invariances found in PP has
been presented previously19). All of these active space methods
can provide accurate energetics for many challenging systems
when coupled with perturbative corrections (e.g., CASPT2,20

VOD(2),21 or PP(2)19) to account for the remaining dynamical
electron-electron correlations.

Because these methods variationally optimize the molecular
orbitals based on a correlated wave function that provides a
better reference description of the system, they tend to be more
resistant to spin SB.22 In fact, because it solves the FCI problem
in the active space, CASSCF would be expected to exhibit
distinct unrestricted solutions only if the chosen active space

were too small to describe the important correlations in the
system under study. Because VOD and PP describe active space
correlations more approximately, they break spin symmetry
more frequently, albeit often at longer bond distances than does
HF.14,22

However, as was recently noted, these active space methods
exhibit an unusual feature19 not found in HF and other full-
space methods: they break spin symmetry nonsmoothly,
exhibiting a discontinuity in the first derivative of the energy
with respect to nuclear displacement. Because the exact PES
must be both smooth and continuous, such discontinuities and
kinks are indicative of an ill-defined Ansatz. For example, local
correlation methods of the style pioneered by Saebø and Pulay23

define the terms contributing to the correlation energy based
on spatial criteria, leading to discontinuities in regions of the
PES where interorbital distances cross the cutoff threshold.24

Because of the obvious problems this creates for studying
potential energy surfaces, an important criterion for a model
chemistry is that it should produce smooth, differentiable
surfaces with changes in nuclear geometry.17 Like the afore-
mentioned local models, UVOD and UPP fail this test, but for
a completely different reason, as we shall see.

In fact, as we will demonstrate, this UVOD and UPP SB
behavior is quite general and can occur with any active space
method that does not solve FCI within the active space. Here
we explain the origin of this odd SB behavior in terms of orbital
subspace partitionings and discuss its implications for size
consistency. The results we find lead logically to a new model
in which the space spanned by the alpha and beta core orbitals,
active orbitals (the union of both active occupied and active
virtual), and inactive virtual orbitals are constrained to be
identical. Spin symmetry breaking is allowed only within the
active space.

Spin Symmetry Breaking in Variational Active Space
Methods

Figure 2 plots the restricted and unrestricted VOD and VOD-
(2) solutions in the 6-31G* basis25 for abstracting a hydrogen
atom from methane with all other atoms fixed (RCH ) 1.10 Å,
∠HCH ) 109.5°). The active space consists of fourσCH bonding
orbitals and fourσ*CH antibonding orbitals of each spin type.
These PESs were obtained from energies computed every 0.05
Å from 0.85 to 3.25 Å and every 0.01 Å near curve intersections.
All calculations were performed using a developmental version

Figure 2. Restricted and unrestricted hydrogen abstraction from CH4

with VOD and VOD(2) in the 6-31G* basis, using the perfect pairing
active space.
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ofQ-Chem.26Theuseofmethaneas thespecies is representatives
similar PESs have been observed for numerous other species.
We were only able to converge the unrestricted VOD solution
as short as 2.22 Å. Below that, the solution tends toward the
lower-energy restricted one.

Looking at Figure 2, we observe a nonsmooth (discontinuous
first derivative of the energy with respect to nuclear displace-
ment) restricted to unrestricted transition between 2.49 and 2.50
Å for VOD. In contrast, orbital optimized coupled cluster
doubles (OD),27 which is equivalent to VOD with all orbitals
active, exhibits standard SB behavior with the restricted and
unrestricted solutions coinciding before the SB point.

This nonsmooth SB effect is potentially more severe when
the VOD wave function is corrected perturbatively. If the
perturbative correction is defined as the correction from the
variationally lowest VOD reference solution, we would observe
a sizable energy discontinuity in the VOD(2) energy near 2.5
Å, where UVOD becomes lower in energy. If one instead
chooses to follow the lowest of the two VOD(2) solutions along
the PES, VOD(2) exhibits a continuous but nonsmooth restricted
to unrestricted transition at 2.9 Å, where UVOD(2) becomes
lower in energy.

Results similar to VOD were found for PP in the cc-pCVDZ/
RI-cc-pVDZ basis set,28,29 as shown in Figure 3, where a
nonsmooth crossover between solutions labeledR1 and U1
occurs at 2.89 Å. Furthermore, we were able to locate an
alternate set of restricted and unrestricted solutions, denotedR2
andU2, respectively, that are characterized by an unusual active
space consisting of correlations for the three unstretched C-H
bonding pairs and for the C 1s pair. The bond-breaking pair is
inactive. In contrast to the solutions found for VOD and toR1/
U1, these solutions break symmetry smoothly, like HF, at 1.67
Å. For comparison, HF/cc-pCVDZ breaks symmetry at 1.66
Å.

Though it lies high in energy near equilibrium, at dissociation,
solutionU2 is variationally preferred over the more chemically
sensible solutionU1, and it makes an earlier SB point at 2.43
Å. Presumably, one could also locate other, higher-energy
solutions corresponding to the replacement of unstretched C-H
bonding pairs with the C 1s pair in the active space, though we
did not search for them.

Stability analysis (computed by finite difference of the
analytical gradients) at the PP level indicates that both solutions
R1 andU1 are minima (all eigenvalues of the orbital Hessian
are positive) in the orbital rotation space before, at, and for a

short distance after theR1/U1 crossover point, as shown in Table
1. R1 does not become unstable (with one negative Hessian
eigenvalue) until 2.92 Å, 0.03 Å after the SB point, in marked
contrast with the SB behavior of HF! As expected, following
this instability leads to solutionU1. NeitherR1 norU2 exhibits
any instabilities in the region of their crossover (i.e., near 2.43
Å). On the other hand, solutionU2 branches smoothly from
R2 whenR2 becomes unstable at its SB point (1.66 Å), behaving
exactly like HF would. For all points beyond theR2/U2 SB
point,R2 is unstable andU2 is stable, and for all points before
the SB point, the two solutions coincide.

To understand the behavior, we examine the VOD solutions
in more detail. Spin SB can be viewed as an energetic
competition between the restricted and unrestricted correlated
wave functions. In the absence of correlation, the single-
determinantal reference (e.g., HF/6-31G*) would break spin
symmetry at 1.65 Å, when the unrestricted single determinant
becomes energetically favored. However, spin SB decreases the
magnitude of the correlation energy of the system (defined here
as Ecorr ) EVOD - Eref), because the unrestricted correlations
are more atomic in nature. Plots of the difference∆E ) Eunrest

- Erest for the single-determinant reference, the correlation
energy, and the VOD energy are presented in Figure 4. As the
bond is stretched, the unrestricted reference becomes much more
stable than the restricted one, making∆Eref very negative.
Conversely, the correlation energy is much stronger (more
negative) for the restricted wave function, making∆Ecorr

Figure 3. Various restricted (solid) and unrestricted (dashed) solutions
for hydrogen abstraction from CH4 with PP/cc-pCVDZ. (Inset)R1/U1
SB region.

TABLE 1: Smallest Eigenvalues of the Orbital Rotation
Hessian for PP near the Various SB Points for CH4
Hydrogen Abstraction

R (Å) R1 U1 R2 U2

1.66 0.000251d 0.000251d

1.67a -0.003482 0.002484
1.68 -0.007293 0.002481

2.42 0.004222 0.002476
2.43b 0.003988 0.002476

2.86 0.000077 0.001578
2.89c 0.000029 0.001385
2.90 0.000015 0.001298
2.91 0.000003 0.001212
2.92 -0.000009 0.001131
2.95 -0.000037 0.000916

a R2/U2 SB point b R1/U2 SB point c R1/U1 SB point d U2 and
R2 coincide.

Figure 4. ∆E ) Eunrest- Erest for the reference energy, the correlation
energy, and the total energy for methane dissociation at the VOD/6-
31G* level.
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positive. The competition between these two effects delays the
SB point (where∆EVOD becomes negative) until 2.5 Å, after
which the UVOD solution is favored. This argument also applies
to other correlation methods where the orbitals are reoptimized
(OD, for example) and explains their increased stability against
SB, but it does not explain the coexistence of separate restricted
and unrestricted solutions before the SB point.

Next, we examine the two wave functions near the crossover
point. Because the VOD wave function and energy are defined
by the space spanned by the four orbital subspaces (core, active
occupied, active virtual, and inactive virtual), we compare the
partitioning between these spaces in the restricted and unre-
stricted wave functions at a given geometry. The molecular
orbital coefficients defining the VOD wave function are denoted
as:

for the restricted case, and

and

for the unrestricted case.
To understand how they differ, we compute the corresponding

orbitals30 separately for each of the four subspaces between the
restricted orbitals and the alpha and beta unrestricted orbitals.
These orbitals are formed by computing the eight molecular
orbital overlap matricesD ) 〈R|Uspin〉 between the two solutions
for each of the four subspaces, including:

and

and so on, whereSAO represents the atomic orbital overlap
matrix. These matrices are diagonalized using the singular value
decomposition, and the molecular orbitals transformed to the
new basis. Note that the transformed restricted orbitals, C˜ R, differ
depending on whether the overlap with the alpha or beta
unrestricted orbitals was diagonalized.

Upon performing this analysis on the VOD solutions atRCH

) 2.45 Å, each subspace contained at most one overlap less
than 0.99. The smallest overlap for each subspace is listed in
Table 2. This bond length was chosen because it lies shortly
before the SB point, though the results obtained vary little
throughout the region. The restricted and unrestricted solutions
have virtually identical core subspaces, as indicated by the
essentially perfect overlap. Their alpha active occupied, beta
active occupied, alpha active virtual, and alpha inactive virtual

subspaces differ moderately, whereas their beta active and
inactive virtual subspaces differ significantly.

The corresponding orbitals for the least-overlapping orbitals
obtained from this procedure are plotted in Figure 5 using
Molden,31 enabling us to compare how the wave functions differ.
The unrestricted wave function is, to a good approximation,
obtained by exchanging each plotted restricted orbital with its
unrestricted counterpart.

For both wave functions, the core orbitals are simply the C
1s orbitals and are relatively uninteresting. The active occupied
orbital of interest changes from a C-H σ-bonding orbital
(restricted) to a H 1s(alpha unrestricted) and a C sp-hybrid
(beta unrestricted). This shift is the standard spin SB behavior
one would expect. The alpha active virtual switches from a C-H
σ*-antibonding orbital (restricted) to a C sp-hybrid (unrestricted),
and the alpha inactive virtual shifts density slightly toward the
hydrogen. In the beta virtual space, the H 1s counterpart to the
unrestricted active virtual is moved to the inactive virtual space.
In its place, a formerly inactive virtual with significant C sp-
character is made active. These changes in the virtual subspaces
maximize the correlation energy by increasing the fraction of
the active space lying on the carbon atom, which has a greater
potential for correlation interactions than does the hydrogen
atom.

Elsewhere, we have observed the exchange of the unrestricted
“bonding” active occupied orbital and a core orbital,14 in this
case pushing the H 1s orbital into the core space, and making
the C 1s active. When the H 1s orbital is far enough away, it
becomes almost totally uncorrelated with the other electrons.
In that event, even the weak correlations involving the C 1s
orbital are stronger than those with the H 1s orbital, so the
variationally determined active space will reflect this.

By expanding the active space on one fragment at the expense
of another, the unrestricted wave function changes and does
not approach the proper dissociation limits, meaning that it is
not size consistent. Instead, the singlet state CH3-H supersystem
at a 50 Å separation lies 9.9 millihartrees (6.2 kcal/mol) lower
than the sum of the individual doublet state fragment energies
with UVOD, as shown in Table 3. This lack of strict size
consistency arises directly from the unconstrained orbital
optimization in the unrestricted methods, and it occurs despite
the fact that VOD, as a coupled cluster method, is manifestly
extensive with molecular size.

The PP solutions presented earlier exhibit similar features to
the VOD ones. SolutionU1 arises primarily from a mixing
between the active and inactive virtual orbitals analogous to
that observed for UVOD.U2, on the other hand, has the spin
SB occurring solely in the inactive core space (where the
dissociating pair resides). Therefore, the active space does not
change betweenR2 andU2 at the SB point, and it breaks spin
symmetry smoothly. This RHF-like treatment of the bond-
breaking pair also explains why the SB point occurs essentially
at the same distance as for HF and why the asymptote ofR2 is
so high in energy. At long distance, the correlation energy of
the unrestricted bonding pair is smaller in magnitude than the
correlation energy for the C 1s pair, soU2 lies lower thanU1.

The reason for the unusual SB behavior is now clear. The
optimal active spaces that maximize the correlation energy for
a given reference determinant differ for restricted and unre-
stricted wave functions. To a large extent, the correlation energy
can be maximized without altering the reference energy at all.
For example, mixing between active and inactive virtual orbitals
to increase the active virtual space density on the carbon atom
at the expense of the hydrogen does not change the occupied

TABLE 2: Smallest Orbital Overlap Values between
Restricted and Unrestricted VOD Orbital Subspaces Slightly
before (RCH ) 2.45 Å) the SB Pointa

〈R|UR〉 〈R|Uâ〉
core 1.00 1.00
act. occ. 0.82 0.81
act. vir 0.77 0.37
inact. vir. 0.93 0.45

a All other overlaps not listed are>0.99.

CR ) [Ccore
R Cact.occ.

R Cact.vir.
R Cinact.vir.

R ] (1)

CUR ) [Ccore
UR Cact.occ.

UR Cact.vir.
UR Cinact.vir.

UR ] (2)

CUâ ) [Ccore
Uâ Cact.occ.

Uâ Cact.vir.
Uâ Cinact.vir.

Uâ ] (3)

Dcore
RUR ) 〈Rcore|Ucore

R 〉 ) Ccore
R †SAOCcore

UR (4)

Dcore
RUâ ) 〈Rcore|Ucore

â 〉 ) Ccore
R †SAOCcore

Uâ (5)
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virtual partitioning, so the reference energy remains the same,
but it does allow the unrestricted wave function to capture more
correlation energy. The restricted wave function, being delo-
calized over the whole molecule, prefers the original antibonding
orbitals in the active virtual space.

These different optimal active spaces create different wave
functions, and we arrive at a different view for the spin SB
problem; one that is schematically shown in Figure 6. Before
and after the crossover point, the restricted and unrestricted
solutions are separate minima in the orbital rotation space. At
the crossover point, the loss of correlation energy perfectly
offsets the benefit of breaking spin symmetry in the reference,
and∆E ) Eunrest- Erest ) 0. At shorter bond distances,∆E >
0 (favoring the restricted solution), and beyond the SB point,
∆E < 0 (favoring the unrestricted one). Not until some distance
after the SB point, when the unrestricted solution lies far enough
below the restricted one to eliminate the barrier between them,
does the restricted solution develop an instability that leads to
the unrestricted solution. In general, because of the difference
in the optimal active spaces, the UVOD (or related method)

wave function will not coincide with the restricted one, at least
in the regime where a separate UHF solution exists, in stark
contrast to the HF or OD case. In turn, this SB behavior destroys
the size consistency of VOD and PP.

To rectify these problems, we propose a new model for spin-
unrestricted active space methods where the spatial partitioning
between the active and inactive subspaces will be identical
(restricted) for both sets of spin orbitals, but the active orbitals
will be allowed to break spin symmetrywithin the active space.
For example, in the case of VOD, the new unrestricted model
would allow the partitioning between active occupied and active
virtual orbitals to differ in the alpha and beta spin cases, while
ensuring that the space spanned by the union of the two active
subspaces is identical.

In PP, the alpha and beta orbitals will be able to break spin
symmetry by mixing individually between correlated pairs only,
not by mixing with inactive orbitals, ensuring that this unusual
SB phenomenon and its associated problems do not occur. In
fact, for a single dissociating pair with these additional
constraints, PP will no longer break spin symmetry at all, as
we have verified by trying to break symmetry fromR1 in
methane with all inactive orbitals frozen to prevent their mixing
with the active orbitals. With that additional constraint,R1
becomes stable for all bond lengths. This result is unsurpris-
ing: PP solves the pair problem exactly, and it includes pair
interactions only at the mean-field level. Therefore, there is no
impetus to break symmetry. Furthermore, whereas solutionR2
in our example above would still exist (though it would require
a very poor initial guess to find it), solutionU2 would not occur
because it requires that the inactive space be allowed to break
spin symmetry. Of course, in accordance with the variational
procedure used to determine the PP energy, this proposed
additional constraint effectively raises the asymptotic total
energy by roughly 9 kcal/mol (the energy separation between
R1 andU2 at 3.5 Å). On the other hand, one hopes that the
restoration of size consistency means that this higher total energy
will provide better chemical properties (the atomization energy,
for example).

Conclusion

Unlike spin SB in most quantum chemical model chemistries,
the variational active space methods exhibit nonsmooth restricted
to unrestricted transitions. This occurs because the wave function
and the energy depend on the partitioning between the active
and inactive spaces in addition to the partitioning of the occupied
and virtual spaces, and because the orbital optimization is
unconstrained. When breaking symmetry, wave functions can

Figure 5. Corresponding orbitals between the restricted and unrestricted wave functions with the smallest overlap in each subspace atRCH ) 2.450
Å.

TABLE 3: Size-Consistency Error ) Esupersystem- Efragments
of UVOD/6-31G* at Dissociation

species energy (Eh)
2CH3 -39.608129
2H -0.498233
1CH3-Ha -40.116217
Error -0.009854

a CH3-H super system was computed with a 50 Å separation
between the fragments.

Figure 6. Schematic of an orbital rotation energy surface with respect
to breaking spin symmetry in the orbitals for variationally optimized
active space methods.∆E ) Eunrest- Erest. R andU label the restricted
and unrestricted solutions, respectively.
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often lower their energies by expanding the active space on one
fragment at the expense of another fragment, giving a different
wave function than one would obtain by studying either
fragment alone. The two solutions have different optimal active
spaces, which leads to two distinct, stable solutions that cross
at the SB point. This result implies that, as defined currently,
these unrestricted methods are not size consistent. In this light,
previously computed UVOD and UPP results ought to be re-
evaluated.

Although these issues undermine unrestricted active space
methods in their current form, they can be reformulated to
circumvent the SB and size consistency problems. Clearly, a
more limited spin-unrestricted model is necessary. The simplest
possibility is to constrain the partitioning between the active
and inactive subspaces to be the same for both alpha and beta
spin sets, but to allow the partitioning between the occupied
and virtual orbitals within the active space to differ between
the alpha and beta spin sets. This model should eliminate the
artifactual SB behavior observed here and restore size consis-
tency, and it merits further study. Looking ahead, UPP shows
promising behavior for efficiently treating challenging radicals.14

It should prove particularly interesting to reconsider the behavior
of UPP with the new model for cases such as F2

+ and allyl,
both of which exhibit substantial symmetry-breaking effects
under the current formulation.
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