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Active space coupled cluster methods exhibit unusual, nonsmooth spin symmetry-breaking behavior where
the unrestricted minimum lies higher in energy at short bond distances and crosses below the restricted solution
at longer distances. The restricted solution is also observed to be a stable minimum slightly beyond the

symmetry-breaking point. This behavior arises due to differences in the optimal active spaces defining the

restricted and unrestricted wave functions and results in unrestricted wave functions that are not strictly size

consistent. We suggest a new, size-consistent model that allows the orbitals to break spin symmetry only
within the active space.

Introduction '

In writing down the equations for unrestricted Hartréeck
(UHF) theory in 1954, Pople and Nesbet recognized that, “There
is no a priori reason, however, why any of the orbitals in one ()
[spin] set should be identical with any in the othérlh the
limit of the exact wave function, full configuration interaction 5 ()
(FCI), there is no advantage to any particular representation of &
the alpha and beta spatial orbitaksll give the same FCI energy. w ©
Approximate wave functions, on the other hand, can sometimes
benefit variationally from breaking spin or spatial symmetry.
In the former, the alpha and beta spatial orbitals differ, whereas
in the latter, the molecular orbitals no longer transform according
to the point-group symmetry of the molecule. In this article, !
we only consider spin symmetry breaking (SB). ) 0 ]

Symmetry breaking in quantum chemistry is a tradedtile spin-symmetry-breaking coordinate
variationally lower energy of the symmetry-broken solution is Figure 1. Schematic of a typical orb!tal rotation energy surface with
often desirable, but the solution often lacks desirable properties'€SPect to breaking spin symmetry in the orbitals (a) before the SB
inherent to the exact wave function. For example, unlike their point, (b) at the SB point, and (c) after the SB point.
restricted counterparts, unrestricted wave functions are not

eigenfunctions_ of the spin operatSé‘: Thg rapid changes in_ (RHF) theory cannot properly describe homolytic bond dis-
the wave function for small geometric shifts near the SB point ¢ .iation to give an electron localized on each fragrfient.

leads to deformed potential energy surfaces and Spurious)nqieaq in the RHF long-bond-length limit, both electrons share
property predictions, such as the infamous cases where perturs, ghatia) orhital spread over both fragments. Spin symmetry
bation-theory-predicted harmonic vibrational frequencies are breaking allows the alpha bonding orbital to localize to one

Eunﬂreds or N?Vﬁn ;Tousands Olf) vyavenqmbsrs zjn éTrf_orm fragment and the beta bonding orbital to localize to the other,
urthermore, Maller Plesset perturbation series based on Nighly e44ing to the qualitatively correct dissociation limit (at the

spln-contamlnated UHF SO.IUt'OnS exhibit ext_remely poor con- expense of the wave function no longer being an eigenfunction
vergence W'7th respect to higher-order terms in the perturt_)auve of &). Because of their often better energetics, unrestricted
expanlflorﬁ. (g_n dthe other h?‘”‘,’f’, restlrlcted dwave functions 1 a1hods are routinely used for treating open-shell systems, bond
typically overbind species significantly, and are not size- yisqqciation, transition states, diradicals, and other systems with
consistent. Deciding whether to grant the wave function the highly correlated electronic structure
ﬂexl')tl)'“ty tohbredak s(;jyr‘rr1]metry dep;len’ds n Ilarge part on the To understand the orbital behavior near the SB point, consider
problem at hand and the researcher's goals. the wave function near equilibrium along a bond-breaking
Spin SB becomes variationally advantageous when the coordinate on the potential energy surface (PES). In this region,
approximate wave function lacks the flexibility to properly the RHF (or related method) solution is a minimum with respect
to orbital rotations along the spin symmetry-breaking coordinate,
* Corresponding author. E-mail: gberan@mit.edu. as shown schematically in Figure 1, curve a. However, at some
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describe the system. For example, restricted HartFexk
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point during the stretch, the second derivative of the energy -40.10
with respect to SB orbital rotations becomes zero (curve b),
allowing the wave function to change significantly with no

change in the energy. Beyond the SB point (curve c), the
unrestricted solution becomes variationally preferred, and the
restricted solution lies at a saddle point between two equivalent £ _40.00 |
unrestricted solutions in the orbital rotation space.

Given the limitations of HF in providing a qualitatively
correct reference determinant for highly correlated systems suchg
as radicals, diradicals, and transition states, research efforts have
focused on simplified correlated wave functions that include a -40.30
description of the static correlation effects that are so important
in these systems. Perhaps the most ubiquitous of these ap-
proaches is the so-called complete active space self-consistent  -40.35 ' : :
field (CASSCF) wave functiof,in which the FCI problem is 1.0 1.5 2.0 2.5 3.0
solved within a small subset of active orbitals, the number of Rch (Ang)
which typically corresponds to the chemically interesting Figure 2. Restricted and unrestricted hydrogen abstraction frors CH
orbitals. The partitioning between active and inactive orbitals with VOD and VOD(2) in the 6-31G* basis, using the perfect pairing
is determined variationally. Because they provide the exact active space.
solution within the active space, CASSCF wave functions are
invariant to mixing between active occupied and active virtual were too small to describe the important correlations in the
orbitals. Instead, the energy depends only on the partitioning System under study. Because VOD and PP describe active space
between three subspaces: inactive occupied orbitals, activecorrelations more approximately, they break spin symmetry
orbitals (both occupied and virtual), and inactive virtual orbitals. more frequently, albeit often at longer bond distances than does
Unfortunately, the factorial scaling of CASSCF with respectto HF 1422
the size of the active space size limits its applicability to systems However, as was recently noted, these active space methods
with up to about 14 active orbitals and electrons. exhibit an unusual featut®not found in HF and other full-

Active space coupled cluster methods, such as valence orbital-SPace methods: they break spin symmetry nonsmoothly,
optimized coupled cluster doubles (VOE)and an unrestricted e>§h|b|t|ng a discontinuity in the first derivative of the energy
coupled cluster formulation of perfect pairing (PP¥> have with respect to nuclear dlsplac_ement. Becau;e the_ exact PES
been developed as less expensive approximations to CASSCHNUSt be t_)oth smooth anc_i continuous, such discontinuities and
for the treatment of systems exhibiting strong static correlation Kinks are indicative of an ill-defined Ansatz. For example, local
effects. Instead of solving the FCI problem, VOD solves the correlation methods of the style pioneered by Saebg and#ulay
coupled cluster doubles (CCB)equations in an active subset define the terms contributing to the correlation energy based
of the orbitals. As in CASSCF, the actual orbitals are obtained On Spatial criteria, leading to discontinuities in regions of the
by variationally minimizing the active space CCD energy with PES where mterorblt.al distances cross the cutoff thres‘HoId.
respect to orbital rotations. In contrast to HF, for which the Because of the obvious problems this creates for studying
energy depends solely on the partitioning between the occupiedPOtential energy surfaces, an important criterion for a model
and virtual subspaces, or CASSCF, for which the dependencechemistry is that it should produce smooth, differentiable
is described above, the VOD energy depends on the partitioningSUrfaces with changes in nuclear geoméfry.ike the afore-
between four subspaces: the uncorrelated core occupied, thénentioned local models, UVOD and UPP fail this test, but for

active occupied, the active virtual, and the uncorrelated inactive & Completely different reason, as we shall see.
virtual orbital Subspaces_ In faCt, as we will demonstrate, this UVOD and UPP SB

D behavior is quite general and can occur with any active space
method that does not solve FCI within the active space. Here
we explain the origin of this odd SB behavior in terms of orbital

-40.15

(E

>
(o2}
g
(0]

-40.25

RVOD(2)

PP can be viewed as a strongly local approximation to VO
that pairs the active electrons and allows only one correlating

orbital per electron pait”18 The simplicity and computational oo . S ‘
subspace partitionings and discuss its implications for size

affordability of PP makes it a promising candidate to replace ! . .
HF in many classes of systems for which static correlation is consistency. The results we find lead logically to a new model

important!+18The local approximation inherent in PP destroys n V.VhiCh the space spgnned by the alpha and b?ta core orb!tals,

the invariance between active occupied or active virtual orbitals active orb|tals_ (the_ union of bOth. active occup|ed_ and active

found in VOD. Instead, PP is generally only invariant toward ylrtua_ll), and_ inactive virtal or_b|ta_ls are constrame_d o be

mixing between inactive occupied or inactive virtual orbitals |dent|cal. Spin symmetry breaking is allowed only within the

(a more complete discussion of the invariances found in PP has?ctive space.

been presented previously All of these active space methods . L . .

can provide accurate energetics for many challenging systemsSPIn Symmetry Breaking in Variational Active Space

when coupled with perturbative corrections (e.g., CASPT2, Methods

VOD(2),* or PP(2}9) to account for the remaining dynamical Figure 2 plots the restricted and unrestricted VOD and VOD-

electron-electron correlations. (2) solutions in the 6-31G* bagsfor abstracting a hydrogen
Because these methods variationally optimize the molecular atom from methane with all other atoms fixeRe( = 1.10 A,

orbitals based on a correlated wave function that provides a DHCH = 109.5). The active space consists of fawgy bonding

better reference description of the system, they tend to be moreorbitals and four*cy antibonding orbitals of each spin type.

resistant to spin SB? In fact, because it solves the FCI problem These PESs were obtained from energies computed every 0.05

in the active space, CASSCF would be expected to exhibit A from 0.85 to 3.25 A and every 0.01 A near curve intersections.

distinct unrestricted solutions only if the chosen active space All calculations were performed using a developmental version
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-39.90 T . : . T TABLE 1: Smallest Eigenvalues of the Orbital Rotation
Hessian for PP near the Various SB Points for CH
-39.95 Hydrogen Abstraction
-40.00 | R(A) RL U1 R2 U2
3 1.66 0.000254  0.00025%
g 4005 1.67 —0.003482  0.002484
] 1.68 —0.007293 0.002481
< -40.10
5 2.42 0.004222 0.002476
g -40.15 243  0.003988 0.002476
L
4020 2.86 0.000077  0.001578
-40.25 2.89 0.000029 0.001385
: 2.90 0.000015 0.001298
-40.30 . . . ‘ . 291 0.000003 0.001212
’ 1.0 15 20 25 3.0 3.5 2.92 —0.000009 0.001131
2.95 —0.000037 0.000916
Re-H (Ang) . L o "
Figure 3. Various restricted (solid) and unrestricted (dashed) solutions R (5)2ir/1l(J:i2deSB point ® R1/U2 SB point ©R1AJ1 SB point ¢ U2 and
for hyd(ogen abstraction from Ghivith PP/cc-pCVDZ. (InsetR1/U1 ’
SB region. 0.20 . i i . .
of Q-Chen?8The use of methane asthe speciesisrepresentative o  0.15 1
similar PESs have been observed for numerous other speciesg 010 | AE . .
We were only able to converge the unrestricted VOD solution § ’ AEC(';";: °
as short as 2.22 A. Below that, the solution tends toward the < 05 | AEyop 4

res

lower-energy restricted one.

Looking at Figure 2, we observe a nonsmooth (discontinuous '~ 0.00 | M 7

first derivative of the energy with respect to nuclear displace- § 0.05 | l
ment) restricted to unrestricted transition between 2.49 and 2.50 S

A for VOD. In contrast, orbital optimized coupled cluster L:f -0.10 1
doubles (ODY’ which is equivalent to VOD with all orbitals W

active, exhibits standard SB behavior with the restricted and 015 ¢ i
unrestricted solutions coinciding before the SB point. -0.20 s s . . .

This nonsmooth SB effect is potentially more severe when 22 24 2.6 2.8 3.0 3.2 34
the VOD wave function is corrected perturbatively. If the Rcw (Ang)
perturbative correction is defined as the correction from the rigre 4. AE = Ejyes— Erextfor the reference energy, the correlation
variationally lowest VOD reference solution, we would observe energy, and the total energy for methane dissociation at the VOD/6-
a sizable energy discontinuity in the VOD(2) energy near 2.5 31G* level.
A, where UVOD becomes lower in energy. If one instead
chooses to follow the lowest of the two VOD(2) solutions along short distance after tHel/U1 crossover point, as shown in Table
the PES, VOD(2) exhibits a continuous but nonsmooth restricted 1. Rl does not become unstable (with one negative Hessian
to unrestricted transition at 2.9 A, where UVOD(2) becomes eigenvalue) until 2.92 A, 0.03 A after the SB point, in marked
lower in energy. contrast with the SB behavior of HF! As expected, following
Results similar to VOD were found for PP in the cc-pCVDZ/ this instability leads to solutiob1. NeitherR1 norU2 exhibits
RI-cc-pVDZ basis set®?® as shown in Figure 3, where a any instabilities in the region of their crossover (i.e., near 2.43
nonsmooth crossover between solutions labdékdand Ul A). On the other hand, solutiob2 branches smoothly from
occurs at 2.89 A. Furthermore, we were able to locate an R2 whenR2 becomes unstable at its SB point (1.66 A), behaving
alternate set of restricted and unrestricted solutions, def@ed exactly like HF would. For all points beyond tHe2/U2 SB
andU2, respectively, that are characterized by an unusual activepoint, R2 is unstable antl2 is stable, and for all points before
space consisting of correlations for the three unstretched C  the SB point, the two solutions coincide.
bonding pairs and for the C 1s pair. The bond-breaking pairis  To understand the behavior, we examine the VOD solutions
inactive. In contrast to the solutions found for VOD andRt/ in more detail. Spin SB can be viewed as an energetic
U1, these solutions break symmetry smoothly, like HF, at 1.67 competition between the restricted and unrestricted correlated
A. For comparison, HF/cc-pCVDZ breaks symmetry at 1.66 wave functions. In the absence of correlation, the single-
. determinantal reference (e.g., HF/6-31G*) would break spin
Though it lies high in energy near equilibrium, at dissociation, symmetry at 1.65 A, when the unrestricted single determinant
solutionU2 is variationally preferred over the more chemically becomes energetically favored. However, spin SB decreases the
sensible solutioJ1, and it makes an earlier SB point at 2.43 magnitude of the correlation energy of the system (defined here
A. Presumably, one could also locate other, higher-energy as E.or = Evop — Erer), because the unrestricted correlations
solutions corresponding to the replacement of unstretched C ~ are more atomic in nature. Plots of the differedde = E rest
bonding pairs with the C 1s pair in the active space, though we — Eg for the single-determinant reference, the correlation
did not search for them. energy, and the VOD energy are presented in Figure 4. As the
Stability analysis (computed by finite difference of the bond is stretched, the unrestricted reference becomes much more
analytical gradients) at the PP level indicates that both solutionsstable than the restricted one, makidees very negative.
R1 andU1 are minima (all eigenvalues of the orbital Hessian Conversely, the correlation energy is much stronger (more
are positive) in the orbital rotation space before, at, and for a negative) for the restricted wave function, makifdEcor
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TABLE 2: Smallest Orbital Overlap Values between subspaces differ moderately, whereas their beta active and
Restricted and Unrestricted VOD Orbital Subspaces Slightly inactive virtual subspaces differ significantly.
before Rey = 2.45 A) the SB Point

The corresponding orbitals for the least-overlapping orbitals

R U RUD obtained from this procedure are plotted in Figure 5 using
core 1.00 1.00 Moldeng! enabling us to compare how the wave functions differ.
act. occ. 0.82 0.81 The unrestricted wave function is, to a good approximation,
act. vir. 0.77 0.37 obtained by exchanging each plotted restricted orbital with its
inact. vir. 0.93 0.45

unrestricted counterpart.
*All other overlaps not listed are 0.99. For both wave functions, the core orbitals are simply the C
1s orbitals and are relatively uninteresting. The active occupied
orbital of interest changes from a—& o-bonding orbital
(restricted) © a H 1s(alpha unrestricted) @aha C sp-hybrid
(beta unrestricted). This shift is the standard spin SB behavior
one would expect. The alpha active virtual switches from-&iC
*-antibonding orbital (restrictedpta C sp-hybrid (unrestricted),
and the alpha inactive virtual shifts density slightly toward the
hydrogen. In the beta virtual space, the H 1s counterpart to the

Next, we examine the two wave functions near the crossover . . . - . : .
. . ) unrestricted active virtual is moved to the inactive virtual space.
point. Because the VOD wave function and energy are defined | . . : . L
In its place, a formerly inactive virtual with significant C sp-

by the space spanned by the four orbital subspaces (core, active . . . .
. - . . ) . Character is made active. These changes in the virtual subspaces
occupied, active virtual, and inactive virtual), we compare the S . . ! .
e . - maximize the correlation energy by increasing the fraction of
partitioning between these spaces in the restricted and unre-, . ; )
. . - the active space lying on the carbon atom, which has a greater
stricted wave functions at a given geometry. The molecular

orbital coefficients defining the VOD wave function are denoted potential for correlation interactions than does the hydrogen
atom.
as:

Elsewhere, we have observed the exchange of the unrestricted
CR=[cR cR R R 1) “bonding” active occupied orbital and a core orbitain this
coreact.occ.7actvir. Zinact.vir case pushing the H 1s orbital into the core space, and making
the C 1s active. When the H 1s orbital is far enough away, it
becomes almost totally uncorrelated with the other electrons.
cYr =[cur gl cde  cve @) In that event, even the weak correlations involving the C 1s
coreact.occ. act.vir. =inact.vir orbital are stronger than those with the H 1s orbital, so the
variationally determined active space will reflect this.

positive. The competition between these two effects delays the
SB point (whereAEyop becomes negative) until 2.5 A, after
which the UVOD solution is favored. This argument also applies
to other correlation methods where the orbitals are reoptimized
(OD, for example) and explains their increased stability against
SB, but it does not explain the coexistence of separate restricte
and unrestricted solutions before the SB point.

for the restricted case, and

and
By expanding the active space on one fragment at the expense
cr=[chch coh ch ] (3) of another, the unrestricted wave function changes and does
‘core™~act.occ~act.vir.~inact.vir . - . . e
not approach the proper dissociation limits, meaning that it is
for the unrestricted case. not size consistent. Instead, the singlet statg-€H#Hsupersystem

To understand how they differ, we compute the corresponding at & 50 A separation_lie_s 9.9 millihartrees (6.2 kcal/mol) Iow«_—:r
orbital$© separately for each of the four subspaces between thethan the sum of the individual doublet state fragment energies
restricted orbitals and the alpha and beta unrestricted orbitals.With UVOD, as shown in Table 3. This lack of strict size
These orbitals are formed by computing the eight molecular consistency arises directly from the unconstrained orbital
orbital overlap matrice® = [R|Us""between the two solutions ~ OPtimization in the unrestricted methods, and it occurs despite

for each of the four subspaces, including: th? faqt that'tXOD’I as ? coypled cluster method, is manifestly
extensive with molecular size.
DRV = R JU%, 3= CR IS, ,Coe, (4) The PP solutions presented earlier exhibit similar features to
the VOD ones. SolutiorJ1 arises primarily from a mixing
and between the active and inactive virtual orbitals analogous to
that observed for UVODU2, on the other hand, has the spin
RUS __ R T U i i i i
Dcorg_ R, ejufor Ceore sAOccfre (5) SB occurring solely in the inactive core space (where the

dissociating pair resides). Therefore, the active space does not
and so on, wheré&,o represents the atomic orbital overlap change betweeR2 andU2 at the SB point, and it breaks spin
matrix. These matrices are diagonalized using the singular valuesymmetry smoothly. This RHF-like treatment of the bond-
decomposition, and the molecular orbitals transformed to the breaking pair also explains why the SB point occurs essentially

new basis. Note that the transformed restricted orbit&sliffer at the same distance as for HF and why the asymptoR2 a$

depending on whether the overlap with the alpha or beta S0 high in energy. At long distance, the correlation energy of

unrestricted orbitals was diagonalized. the unrestricted bonding pair is smaller in magnitude than the
Upon performing this analysis on the VOD solutiongRat; correlation energy for the C 1s pair, 82 lies lower tharlJ1.

= 2.45 A, each subspace contained at most one overlap less The reason for the unusual SB behavior is now clear. The
than 0.99. The smallest overlap for each subspace is listed inoptimal active spaces that maximize the correlation energy for
Table 2. This bond length was chosen because it lies shortlya given reference determinant differ for restricted and unre-
before the SB point, though the results obtained vary little stricted wave functions. To a large extent, the correlation energy
throughout the region. The restricted and unrestricted solutionscan be maximized without altering the reference energy at all.
have virtually identical core subspaces, as indicated by the For example, mixing between active and inactive virtual orbitals
essentially perfect overlap. Their alpha active occupied, betato increase the active virtual space density on the carbon atom
active occupied, alpha active virtual, and alpha inactive virtual at the expense of the hydrogen does not change the occupied
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R/alpha U/alpha R/beta U/beta
act. occ. > > ' > 7 ._.-
. '\ > ' \
act. vir. [ = .
/ /A /
inact vir ‘E e y | { __ >

Figure 5. Corresponding orbitals between the restricted and unrestricted wave functions with the smallest overlap in each stesra@480
A

TABLE 3: Size-Consistency Error = Esypersystem— Efragments wave function will not coincide with the restricted one, at least
of UVOD/6-31G* at Dissociation in the regime where a separate UHF solution exists, in stark
species energye) contrast to the HF or OD case. In turn, this SB behavior destroys
2CH, —39.608129 the size gonsistency of VOD and PP. .
2H —0.498233 To rectify these problems, we propose a new model for spin-
ICHz—H2 —40.116217 unrestricted active space methods where the spatial partitioning
Error —0.009854 between the active and inactive subspaces will be identical
aCH;—H super system was computed with a 50 A separation (restricted) for both sets of spin orbitals, but the active orbitals
between the fragments. will be allowed to break spin symmetwyithin the active space.

For example, in the case of VOD, the new unrestricted model
would allow the partitioning between active occupied and active
virtual orbitals to differ in the alpha and beta spin cases, while
ensuring that the space spanned by the union of the two active
subspaces is identical.

In PP, the alpha and beta orbitals will be able to break spin
symmetry by mixing individually between correlated pairs only,
not by mixing with inactive orbitals, ensuring that this unusual
SB phenomenon and its associated problems do not occur. In
fact, for a single dissociating pair with these additional
constraints, PP will no longer break spin symmetry at all, as
we have verified by trying to break symmetry froRL in
methane with all inactive orbitals frozen to prevent their mixing

. . . - . with the active orbitals. With that additional constraif]
Figure 6. Schematic of an orbital rotation energy surface with respect b ble f Il bond | h hi Iti .
to breaking spin symmetry in the orbitals for variationally optimized ecomes stable for all bond lengths. This result is unsurpris-

active space methodAE = Eynesi— Erese RandU label the restricted ~ iNg: PP solves the pair problem exactly, and it includes pair
and unrestricted solutions, respectively. interactions only at the mean-field level. Therefore, there is no
impetus to break symmetry. Furthermore, whereas soliRibn

in our example above would still exist (though it would require
'a very poor initial guess to find it), solutidg2 would not occur
because it requires that the inactive space be allowed to break
spin symmetry. Of course, in accordance with the variational
procedure used to determine the PP energy, this proposed

Energy

Spin-Symmetry-Breaking Coordinate

virtual partitioning, so the reference energy remains the same
but it does allow the unrestricted wave function to capture more
correlation energy. The restricted wave function, being delo-
calized over the whole molecule, prefers the original antibonding

orbitals in '.[he active \_/|rtual space. . additional constraint effectively raises the asymptotic total
Th_ese different optl_mal active spaces create dlfferen_t wave energy by roughly 9 kcal/mol (the energy separation between

functlons, and we arnve at a different view fqr the spin SB R1 andU2 at 3.5 A). On the other hand, one hopes that the

problem; one that is schematically shown in Figure 6. Before restoration of size consistency means that this higher total energy

and fafter the crossover point, .the restn_cted an(_JI unrestrlctedwi" provide better chemical properties (the atomization energy,
solutions are separate minima in the orbital rotation space. At for example)

the crossover point, the loss of correlation energy perfectly
offsets the benefit of breaking spin symmetry in the reference
andAE = Eynrest— Erest= 0. At shorter bond distancedE >

0 (favoring the restricted solution), and beyond the SB point,  Unlike spin SB in most quantum chemical model chemistries,

AE < 0 (favoring the unrestricted one). Not until some distance the variational active space methods exhibit nonsmooth restricted
after the SB point, when the unrestricted solution lies far enough to unrestricted transitions. This occurs because the wave function
below the restricted one to eliminate the barrier between them, and the energy depend on the partitioning between the active
does the restricted solution develop an instability that leads to and inactive spaces in addition to the partitioning of the occupied
the unrestricted solution. In general, because of the differenceand virtual spaces, and because the orbital optimization is
in the optimal active spaces, the UVOD (or related method) unconstrained. When breaking symmetry, wave functions can

’ Conclusion
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often lower their energies by expanding the active space onone  (9) Roos, B. OAdv. Chem. Phys1987 69, 399-345.

fragment at the expense of another fragment, giving a different _ (10) Krylov, A.1.; Sherrill, C. D.; Byrd, E. F. C.; Head-Gordon, M.
function th ld obtain by studvi ither Chem. Phys199§ 10924), 10669-10678.
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at the SB point. This result implies that, as defined currently, 91?5)9éilrén 6. 3. 0. Austin, B.: Sodt, A Head-Gordon, MPhys
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Although these issues undermine unrestricted active space_ _(16) Purvis, G. D., lll; Bartlett, R. 1. Chem. Phys1982 76, 1910~
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possibility is to constrain the partitioning between the active _(18) Beran, G.J. O.; Head-Gordon, Mlol. Phys.2006 104, 1191
an_d inactive subspaces to be the_: same for both alpha and_beta (19) Beran, G. J. O.; Head-Gordon, M.; Gwaltney, SJRChem. Phys.
spin sets, but to allow the partitioning between the occupied 2006 124, 114107.
and virtual orbitals within the active space to differ between W(|20|1 Arye;ssls%n, KC;thﬂgg&/iztA 248/&} Fi%%s, B. O.; Sadlej, A. J;
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tency, and it merits further study. Looking ahead, UPP shows  (22) Krylov, A. I. J. Chem. Phys200Q 113 6052-6062.
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1 i i i i and references therein.
IthB?:,uFI)d p.';%vtehpartlCUIarly(;n:efreStlng o reCOrTSIieé“:je blff?awor (24) Russ, N. J.; Crawford, T. 0. Chem. Phys2004 121, 691-696.
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